欢迎访问南京大学环境学院!

王津南

 

王津南

教授 博士生导师

Email: wjnnju@163.com

 

一、教育经历

·   2005.09–2009.05,南京大学环境学院环境工程系,工学博士;

·   2003.09–2005.06,南京大学环境学院环境工程系,工学硕士;

·   1997.09–2001.06,南京大学环境学院环境科学系,理学学士。

 

二、工作经历

·   2020.12 至今,     南京大学环境学院环境工程系, 授, 博导

·   2013.04-2014.04,瑞士西北科技大学(FHNW), 高级访问学者

·   2010.12-2020.11,南京大学环境学院环境工程系, 副教授、硕导

·   2009.06–2010.11,南京大学环境学院环境工程系, 讲  师

 

三、研究领域

·   高级氧化技术原理及应用(光催化、类芬顿、电催化)

·   环境工程材料研发及应用(催化材料、吸附材料、膜材料)

·   清洁能源与低碳节能技术研发及应用(产氢、储能、绿色合成、节能降耗)

 

四、学术与社会兼职

·   江苏省环境监测监控协会 副理事长

·   中国化工环保协会 理事

·   SCI期刊《Frontiers in Chemistry》、《Water》、《Purification》编委

·   学术期刊《JETE》、《IJERPH》、《当代化工研究》编委

·   教育部全国研究生教育评估监测专家

 

五、教学(主讲)

·   《环境工程原理》、《环境工程原理实验》、《环境污染控制实验》

·   中国Mooc大学线上课程:《环境工程基础实验》

·   虚拟仿真:《突发河道污染应处置技术》、《工业园区智慧环保管家》

 

六、科研项目(主持)

[1].        南京大学技术创新基金2024.8-2025.8

[2].        地区专项研发与科技示范项目 (DFJH2023044)2024.6-2026.5

[3].        江苏省自然科学基金(BK20231407),2023.8-2025.12

[4].        江苏省水利科技项目(2022037),2022.10-2024.9

[5].        江苏省重点研发计划--社发项目(BE2022771),2022.7-2025.6

[6].        国家自然科学基金项目(520710095),2021.1-2024.12

[7].        国家自然科学基金项目(51878335),2019.1-2022.12

[8].        江苏省自然科学基金面上项目(BK20191255),2019.7-2022.6

[9].        国家重大水专项产业化子课题(2017ZX07602-004),2017.8-2020.12

[10].    中央直属高校国际合作交流项目(0211-14380085),2018.1-2018.11

[11].    江苏省水利科技项目(2017043),2017.9-2019.12

[12].    中央直属高校国际合作交流项目(0211-14380065),2017.9-2018.3

[13].    江苏省水利科技项目(2016039),2016.08-2018.08

[14].    江苏省产学研联合前瞻性课题 (BY2015060-02)2015.08-2017.12

[15].    江苏省环保科研课题(2015010),2015.08-2017.08

[16].    国家自然科学基金重点项目课题(51438008),2015.01-2019.12

[17].    江苏省环保科研课题(2012006),2012.08-2014.08

[18].    江苏省产学研联合前瞻性课题(BY2012154),2012.08-2014.08

[19].    国家自然科学青年基金项目(51008152),2011.01-2013.12

[20].    江苏省自然科学基金面上项目(BK2010381),2010.08-2012.02


七、发表论文(唯一通讯作者)

[1].    Modulating the electronic structure of Mn promotes singlet oxygen generation from electrochemical oxidation of H2O via O-O coupling, Chemical Engineering Journal, (2025).

[2].    BiOI S-scheme induced singlet oxygen-dominated photocatalytic oxidation system, Chemical Engineering Journal, (2025) .

[3].    Bimetallic Pd-In alloy supported on TiO2 nanosheets breaks the rate-limiting step for ultrafast photocatalytic denitrification. Journal of Colloid and Interface Science, (2025).

[4].    Electrochemical reconfiguration of NiFe layered double hydroxide on BiVO4 induced by black phosphorus quantum dots for promoting photoelectrochemical water splitting, Chemical Engineering Journal, (2024)

[5].    Phosphorization of α-Fe2O3 Boosts Active Hydrogen Mediated Electrochemical Nitrate Reduction to Ammonia, Small, (2024)

[6].    Spontaneous generation of ROS via molecular oxygen activation over defect-rich and boron-doped MoS2 catalyst for advanced oxidation process, ACS ES&T Engineering, (2024)

[7].    Single-atomic Ruthenium Coupling with NiFe Layered Double Hydroxide in-situ growth on BiVO4 Photoanode for Boosting Photoelectrochemical Water Splitting, Applied Catalysis B: Environmental and Energy, (2024)

[8].    Amorphous Metal-Organic Frameworks loaded on BiVO4 photoanodes with unique internal metal-like structure for promoting photoelectrochemical water splitting, Applied Catalysis B: Environmental and Energy, (2024)

[9].    Selective Removal of Phenolic Contaminants for Carbon Recycling by Activated Persulfate Based on Oxidative Polymerization Mechanism, Chemical Engineering Journal, (2024)

[10]. Achieving long-term stable BiVO4 photoanodes for solar water splitting via carbon-layer protecting combined with active centers dynamic repairing, Chemical Engineering Journal , (2024)

[11]. Novel Fenton-like catalyst HKUST-1(Cu)/MoS2-3-C with non-equilibrium-state surface for selective degradation of phenolic contaminants: synergistic effects of σ-Cu-ligand and ≡Mo–OOSO3– complex, Water, 2024.

[12]. 碳基材料催化臭氧氧化净水研究进展,中国环境科学, (2024)

[13]. Efficient catalytic ozonation over Co-ZFO@Mn-CN for oxalic acid degradation: Synergistic effect of oxygen vacancies and HOO-Mn-NX bondApplied Catalysis B: Environmental, (2023)

[14]. Boosting light harvesting and charge separation over hollow double-shelled Ag@SrTiO3-TiO2 with Z-scheme heterostructure for highly efficient photocatalytic reduction of nitrate to N2, Chemical Engineering Journal (2023)

[15]. Engineering efficient hole transport layer Ferrihydrite-MXene on BiVO4 photoanodes for photoelectrochemical water splitting: Work function and conductivity regulated, Applied Catalysis B: Environmental, (2022)

[16]. BiOBr/ Bi4O5Br2/PDI constructed for visible-light degradation of endocrine disrupting chemicals: synergistic effects of bi-heterojunction and oxygen evolution, Chemical Engineering Journal (2022)

[17]. Hierarchical nano-vesicles with bimetal-encapsulated for peroxymonosulfate activation: singlet oxygen-dominated oxidation process, Chemical Engineering Journal, (2022)

[18]. Ultrafine-Mn2O3@N-doped porous carbon hybrids derived from Mn-MOFs: Dual-reaction centre catalyst with singlet oxygen-dominant oxidation process, Chemical Engineering Journal, (2022)

[19]. Au@CoS-BiVO4 {010} constructed for visible-light-assisted peroxymonosulfate activation, Catalyst, 2021

[20]. High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@cTiO2 with synergistic effect of light scattering and surface plasmon resonance, Chemical Engineering Journal, (2021)

[21]. Flower-Shaped C-dots/Co3O4{111} Constructed with Dual-Reaction Centers for Enhancement of Fenton-Like Reaction Activity and Peroxymonosulfate Conversion to Sulfate Radical, Catalyst, (2021)

[22]. Pt Nanowire-Anchored Dodecahedral Ag3PO4{110} Constructed for Significant Enhancement of Photocatalytic Activity and Anti-Photocorrosion Properties: Spatial Separation of Charge Carriers and Photogenerated Electron UtilizationCatalysts, 2020,

[23]. Novel Fenton-like catalyst γ-Cu-Al2O3-Bi12O15Cl6 with electron-poor Cu centre and electron-rich Bi centre for enhancement of phenolic compounds degradation and H2O2 utilization: The synergistic effects of σ-Cu-ligand, dual-reaction centres and oxygen vacanciesApplied Catalysis B: Environmental, (2019)

[24]. Highly efficient Z-scheme structured visible-light photocatalyst constructed by selective doping of Ag@AgBr and Co3O4 separately on {010} and {110} facets of BiVO4: pre-separation channel and hole-sink effects, Applied Catalysis B: Environmental, (2019)

[25]. Cu-Al2O3-g-C3N4 and Cu-Al2O3-C-dots with dual-reaction centres for simultaneous enhancement of Fenton-like catalytic activity and selective H2O2 conversion to hydroxyl radicalsApplied Catalysis B: Environmental2018

[26]. Novel 3D core-shell structured CQDs/Ag3PO4@Benzoxazine tetrapods for enhancement of visible-light photocatalytic activity and anti-photocorrosio, Applied Catalysis B: Environmental, (2018)

[27]. Novel Pd/GdCrO3 composite for photo-catalytical reduction of nitrate to N2 with high selectivity and activity. Applied Catalysis B: Environmental, (2018)

[28]. Bipolar jet electrospinning bi-functional nanofibrous membrane for simultaneous and sequential filtration of Cd2+ and BPA from water: Competition and synergistic effect, Chemical Engineering Journal, (2018)

[29]. Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti- photocorrosion, Applied Catalysis B: Environmental, (2017)

[30]. Electrospinning polyvinyl alcohol/silica-based nanofiber as highly efficient adsorbent for simultaneous and sequential removal of Bisphenol A and Cu(II) from water, Chemical Engineering Journal, (2017)

[31]. New insight into influence of mechanical stirring on membrane fouling of membrane bioreactor: Mixed liquor properties and hydrodynamic conditions, Bioresource Technology, (2016)

[32]. Nitrate removal from water by new polymeric adsorbent modified with amino and quaternary ammonium groups: Batch and column adsorption study, Journal of the Taiwan Institute of Chemical Engineers, (2016)

 

八、授权发明专利(第一发明人)

[1].    一种高效稳定的光催化反硝化材料及其制备方法, ZL202111337492.X,授权日期2023.9.21

[2].    一种三维复合光催化材料及其制备方法, ZL202210311303.X, 授权日期2023.8.18

[3].    一种具有氧空位和锰活性位点的臭氧非均相催化材料及其制备方法,ZL202111077908.9,授权日期2022.9.5

[4].    一种可见光辅助类芬顿活化过硫酸盐的光催化复合材料及其制备方法,ZL202011271552.8, 授权日期2022.1.20

[5].     Fenton-like Catalytic Material with Dual Reaction Centers and Preparation Method Thereof, 2021,US 11065610B2(美国)

[6].    一种高效光催化去除高浓度硝酸盐的光催化材料及其制备方法和应用,中国授权,ZL202011016441.2,授权日期2021.09.08

[7].    一种Mn2O3@N掺杂多孔碳杂化类芬顿催化材料及其制备方法和应用,中国授权ZL202010863336.6,授权日2021.9.15

[8].    一种包覆活性双金属氧化物的中空囊泡型介孔分子筛催化材料极其制备方法,中国授权ZL 202110013383.6,授权日2021.11.5

[9].    一种基于新型Fe3O4/Ag@Si三维复合电极电解催化过硫酸盐氧化的高级氧化集成技术与系统,中国授权ZL 2018103270123,授权日 2020.7.31

[10]. Membrane bioreactor for strengthening membrane fouling control and method thereof,Publish date: 10/15/ 2019, Patent No. US10442712B2(美国)

[11]. A high exchange-capacity anion exchange resin with dual functional-groups of synthesis thereof, Publish date: 24/4/ 2018, Patent No. US 9950319 (美国)

[12]. Duplex reactor system for removal of Tebuconazole and method thereof, Date of Patent: Jan. 30, 2018, Patent No. US 9879220 (美国)

[13]. 一种利用强化厌氧生物技术原位修复地下水中石油烃的渗透反应墙系统与方法,中国授权,ZL2016109970322,授权日期2019.8.6

[14]. 可吸附去除重金属离子和光催化降解有机污染物的纤维膜及其制备方法,中国授权,ZL2015106740199授权日期:2019.5.17

[15]. 一种加强膜污染控制的膜生物反应器,2018.08.21,中国授权,ZL 201610281976.X

[16]. 一种复式中和反应器及分散兰56生产过程中的缩合母液废水预处理与资源化系统及方法,2015.4,中国授权,ZL 201310618767.6

[17]. 一种海绵状应急吸附材料及其制备方法, 2015.4,中国授权ZL 201310468896.1

[18]. 一种用于去除水中戊唑醇复式反应器及其系统和方法, 2014.09.19, 中国授权,ZL 2014104847040

[19]. 一种高交换容量双功能基阴离子交换树脂及其合成方法, 2014.7.15,中国授权,ZL2014103359228

[20]. 一种利用废弃秸秆制备可吸附水中三价砷的吸附材料及其制备方法和应用,中国授权, ZL2013105769468

[21]. 可吸附水中砷的海绵状吸附材料及其制备方法和应用,2014.02,中国授权,ZL 201310574036.6

[22]. 一种聚乙烯-甲基丙烯酸-多乙烯多胺纤维及其制备方法,2014.12,中国授权,ZL201210504737.8

[23]. 一种利用废旧聚乙烯醇海绵制备的海绵状吸附材料及其制备方法,2014.7,中国授权,ZL201310036971.7

[24]. 一种胺修饰的纤维状应急吸附材料及其制备方法,2014.4,中国授权,ZL201110427455.8

[25]. 一种利用废弃PET纤维制备的应急吸附材料及制备方法,2014.4,中国授权,ZL201210053178.3

[26]. 一种塔式吸附反应器及其去除水中重金属离子的系统和方法,2014.1,中国授权,ZL201310031731.8

[27]. 一种基于水力循环反应器的饮用水深度处理系统与方法,2013.9,中国授权,ZL201110123992.3

[28]. 一种铁、锰超标水源水的应急预处理系统及其处理方法,2013.5,中国授权,ZL201110009928.2

[29]. 连续式高氨氮尾水的深度处理系统及处理方法,2013.2,中国授权,ZL201010226414.8

[30]. 一种利用废旧聚氨酯海绵制备的重金属捕集材料及制备方法,2013.1,中国授权,ZL 201310036180.4

[31]. 连续式含重金属离子尾水的深度处理系统及处理方法,2012.11,中国授权,ZL201010219244.0

[32]. 电解净水设备电极再生废液的处理与资源化方法,2012.7,中国授权,ZL200910183126.6

 

九、获奖

2024年 南京大学优秀学术硕士研究生学位论文指导教师

2023年 南京大学优秀专业硕士研究生学位论文指导教师

2022年 南京大学育教融合奖

2022年 江苏省第六批333高层次人才培养工程

2019年 江苏省优秀专业硕士研究生学位论文指导教师

2019年 南京大学“创新、创优”先进个人

2018年 首届南京大学紫金全兴环境基金-青年学者奖

2018年 南京大学魅力导师

2017年 江苏省科技服务业“百优人才”

2016年 国家科技进步二等奖 (10/12)

2015年 江苏省“六大人才高峰”人才;

 

十、招生情况

热忱欢迎 环境/化学/材料 等学科有志青年报考博士、硕士研究生;也欢迎相关专业博士到课题组做博士后!



地址:南京市栖霞区仙林大道163号 邮编:210023

师德师风监督举报邮箱:hydw@nju.edu.cn

版权所有 2021南京大学环境学院 苏ICP备10085945-1号 南信备173号